structure
SpringLike'.isSimple
{X : Type u_1}
[TopologicalSpace X]
{i : X → Type u_2}
[(x : X) → Field (i x)]
{A : Subring ((x : X) → i x)}
(hA : SpringLike' A)
:
Type (max (max u_1 u_2) (u_3 + 1))
Note that this is different from the definition of a simple spring in the paper. It is actually stronger!
- F : Type u_3
- forall_injective (x : X) : Function.Injective ⇑(self.h x)
Instances For
def
SpringLike'.isIndex.indExtForVSuccIsSimpleOfIsSimple
{X : Type u_1}
[TopologicalSpace X]
{i : X → Type u_2}
[(x : X) → Field (i x)]
{v : (p : σ(X)) → Valuation (i p.z.1) ℚ≥0}
{A : Subring ((x : X) → i x)}
{hA : SpringLike' A}
{hAv : hA.isIndex v}
{n : ℕ}
(h : ⋯.isSimple)
:
⋯.isSimple
Equations
Instances For
def
SpringLike'.isIndex.indExtForVIsSimpleOfIsSimple
{X : Type u_1}
[TopologicalSpace X]
{i : X → Type u_2}
[(x : X) → Field (i x)]
{v : (p : σ(X)) → Valuation (i p.z.1) ℚ≥0}
{A : Subring ((x : X) → i x)}
{hA : SpringLike' A}
(h : hA.isSimple)
(hAv : hA.isIndex v)
(n : ℕ)
:
⋯.isSimple
Equations
- SpringLike'.isIndex.indExtForVIsSimpleOfIsSimple h hAv n = Nat.recAuxOn n h fun (x : ℕ) (hn : ⋯.isSimple) => SpringLike'.isIndex.indExtForVSuccIsSimpleOfIsSimple hn
Instances For
theorem
SpringLike'.isIndex.indExtForVIsSimpleOfIsSimple_f
{X : Type u_1}
[TopologicalSpace X]
{i : X → Type u_2}
[(x : X) → Field (i x)]
{v : (p : σ(X)) → Valuation (i p.z.1) ℚ≥0}
{A : Subring ((x : X) → i x)}
{hA : SpringLike' A}
(h : hA.isSimple)
(hAv : hA.isIndex v)
(n : ℕ)
:
theorem
SpringLike'.isIndex.indExtForVIsSimpleOfIsSimple_h
{X : Type u_1}
[TopologicalSpace X]
{i : X → Type u_2}
[(x : X) → Field (i x)]
{v : (p : σ(X)) → Valuation (i p.z.1) ℚ≥0}
{A : Subring ((x : X) → i x)}
{hA : SpringLike' A}
(h : hA.isSimple)
(hAv : hA.isIndex v)
(n : ℕ)
:
theorem
SpringLike'.isIndex.indExtForVIsSimpleOfIsSimple_h'
{X : Type u_1}
[TopologicalSpace X]
{i : X → Type u_2}
[(x : X) → Field (i x)]
{v : (p : σ(X)) → Valuation (i p.z.1) ℚ≥0}
{A : Subring ((x : X) → i x)}
{hA : SpringLike' A}
(h : hA.isSimple)
(hAv : hA.isIndex v)
(x : X)
(n : ℕ)
:
def
SpringLike'.isIndex.iSupExtForVIsSimpleOfIsSimple
{X : Type u_1}
[TopologicalSpace X]
{i : X → Type u_2}
[(x : X) → Field (i x)]
{v : (p : σ(X)) → Valuation (i p.z.1) ℚ≥0}
{A : Subring ((x : X) → i x)}
{hA : SpringLike' A}
(h : hA.isSimple)
(hAv : hA.isIndex v)
:
⋯.isSimple
This corresponds to the first statement in Theorem 4 of the paper.
Equations
Instances For
theorem
Subring.map_apply_eq_zero_of_pi_of_eq_of_eq_of_mem_span_of_eq
{X : Type u_1}
{x : X}
{i : X → Type u_2}
[(x : X) → CommRing (i x)]
{A : Subring ((x : X) → i x)}
{a b c : ↥A}
{R : Type u_3}
[Ring R]
{h : (x : X) → i x →+* R}
(hahx : (h x) (↑a x) = 0)
(hbhx : (h x) (↑b x) = 0)
{m : FreeCommRing (Fin 2)}
(hm : m ∈ Ideal.span {FreeCommRing.of 0, FreeCommRing.of 1})
(habcm : (FreeCommRing.lift fun (i_1 : Fin 2) => if i_1 = 0 then a else b) m = c)
:
theorem
Subring.map_apply_eq_map_apply_of_pi_of_eq_of_eq
{X : Type u_1}
{x y : X}
{i : X → Type u_2}
[(x : X) → CommRing (i x)]
{A : Subring ((x : X) → i x)}
{a b c : ↥A}
{R : Type u_3}
[Ring R]
{h : (x : X) → i x →+* R}
(hahxy : (h x) (↑a x) = (h y) (↑a y))
(hbhxy : (h x) (↑b x) = (h y) (↑b y))
{m : FreeCommRing (Fin 2)}
(habcm : (FreeCommRing.lift fun (i_1 : Fin 2) => if i_1 = 0 then a else b) m = c)
:
theorem
NonVanishingConstSetsFromInter.map_apply_eq_map_apply_of_mem_of_mem_of_apply_eq
{X : Type u_1}
{x y : X}
{i : X → Type u_2}
[(x : X) → CommRing (i x)]
{A : Subring ((x : X) → i x)}
{a b c : ↥A}
{R : Type u_3}
[Ring R]
{h : (x : X) → i x →+* R}
{s : Set X}
(habhs : s ∈ NonVanishingConstSetsFromInter a b h)
(hsx : x ∈ s)
(hsy : y ∈ s)
{m : FreeCommRing (Fin 2)}
(habcm : (FreeCommRing.lift fun (i_1 : Fin 2) => if i_1 = 0 then a else b) m = c)
:
theorem
NonVanishingConstSetsFromInter.map_apply_ne_zero_of_forall_mem_of_forall_ne_zero_of_apply_eq
{X : Type u_1}
{x : X}
{i : X → Type u_2}
[(x : X) → CommRing (i x)]
{A : Subring ((x : X) → i x)}
{a b c : ↥A}
{R : Type u_3}
[Ring R]
{h : (x : X) → i x →+* R}
(habhx : (h x) (↑a x) ≠ 0 ∨ (h x) (↑b x) ≠ 0)
{f : (s : Set X) → s ∈ NonVanishingConstSetsFromInter a b h → X}
(habfh : ∀ (s : Set X) (hs : s ∈ NonVanishingConstSetsFromInter a b h), f s hs ∈ s)
(habcfh : ∀ (s : Set X) (hs : s ∈ NonVanishingConstSetsFromInter a b h), (h (f s hs)) (↑c (f s hs)) ≠ 0)
{m : FreeCommRing (Fin 2)}
(habcm : (FreeCommRing.lift fun (i_1 : Fin 2) => if i_1 = 0 then a else b) m = c)
:
theorem
SpringLike'.finite_nonVanishingConstSetsFromInter_of_isSimple
{X : Type u_1}
[TopologicalSpace X]
{i : X → Type u_2}
[(x : X) → Field (i x)]
{A : Subring ((x : X) → i x)}
(a b : ↥A)
{hA : SpringLike' A}
(h : hA.isSimple)
:
(NonVanishingConstSetsFromInter a b h.h).Finite
theorem
SpringLike'.exists_mem_span_and_forall_map_apply_eq_zero_iff_and_of_isSimple
{X : Type u_1}
[TopologicalSpace X]
{i : X → Type u_2}
[(x : X) → Field (i x)]
{A : Subring ((x : X) → i x)}
(a b : ↥A)
{hA : SpringLike' A}
(h : hA.isSimple)
:
theorem
SpringLike'.exists_mem_span_and_forall_apply_eq_zero_iff_and_of_isSimple
{X : Type u_1}
[TopologicalSpace X]
{i : X → Type u_2}
[(x : X) → Field (i x)]
{A : Subring ((x : X) → i x)}
(a b : ↥A)
{hA : SpringLike' A}
(h : hA.isSimple)
:
theorem
SpringLike'.exists_mem_span_and_forall_apply_eq_zero_iff_forall_of_isSimple
{X : Type u_1}
[TopologicalSpace X]
{i : X → Type u_2}
[(x : X) → Field (i x)]
{A : Subring ((x : X) → i x)}
{B : Set ↥A}
(hB : B.Finite)
{hA : SpringLike' A}
(h : hA.isSimple)
:
∃ c ∈ Ideal.span B, ∀ (x : X), ↑c x = 0 ↔ ∀ b ∈ B, ↑b x = 0
theorem
SpringLike'.exists_mem_span_and_eq_biInter_of_isSimple
{X : Type u_1}
[TopologicalSpace X]
{i : X → Type u_2}
[(x : X) → Field (i x)]
{A : Subring ((x : X) → i x)}
{B : Set ↥A}
(hB : B.Finite)
{hA : SpringLike' A}
(h : hA.isSimple)
:
theorem
SpringLike'.springLike_spring_isAffine_of_isSimple_of_forall_imp
{X : Type u_1}
[TopologicalSpace X]
{i : X → Type u_2}
[(x : X) → Field (i x)]
{A : Subring ((x : X) → i x)}
{hA : SpringLike' A}
(h1 : hA.isSimple)
(h2 : ∀ (a b : ↥A), (∀ (x : X), ↑b x = 0 → ↑a x = 0) → a ∈ (Ideal.span {b}).radical)
:
This corresponds to the second statement in Theorem 4 of the paper.
theorem
SpringLike'.isIndex.iSupExtForV_springLike_spring_isAffine_of_isSimple
{X : Type u_1}
[TopologicalSpace X]
{i : X → Type u_2}
[(x : X) → Field (i x)]
{v : (p : σ(X)) → Valuation (i p.z.1) ℚ≥0}
{A : Subring ((x : X) → i x)}
{hA : SpringLike' A}
(h : hA.isSimple)
(hAv : hA.isIndex v)
:
This corresponds to the third statement in Theorem 4 of the paper.