Documentation

Hochster.Section5

structure SpringLike'.isSimple {X : Type u_1} [TopologicalSpace X] {i : XType u_2} [(x : X) → Field (i x)] {A : Subring ((x : X) → i x)} (hA : SpringLike' A) :
Type (max (max u_1 u_2) (u_3 + 1))

Note that this is different from the definition of a simple spring in the paper. It is actually stronger!

Instances For
    def SpringLike'.isIndex.indExtForVSuccIsSimpleOfIsSimple {X : Type u_1} [TopologicalSpace X] {i : XType u_2} [(x : X) → Field (i x)] {v : (p : σ(X)) → Valuation (i p.z.1) ℚ≥0} {A : Subring ((x : X) → i x)} {hA : SpringLike' A} {hAv : hA.isIndex v} {n : } (h : .isSimple) :
    Equations
    Instances For
      def SpringLike'.isIndex.indExtForVIsSimpleOfIsSimple {X : Type u_1} [TopologicalSpace X] {i : XType u_2} [(x : X) → Field (i x)] {v : (p : σ(X)) → Valuation (i p.z.1) ℚ≥0} {A : Subring ((x : X) → i x)} {hA : SpringLike' A} (h : hA.isSimple) (hAv : hA.isIndex v) (n : ) :
      Equations
      Instances For
        theorem SpringLike'.isIndex.indExtForVIsSimpleOfIsSimple_f {X : Type u_1} [TopologicalSpace X] {i : XType u_2} [(x : X) → Field (i x)] {v : (p : σ(X)) → Valuation (i p.z.1) ℚ≥0} {A : Subring ((x : X) → i x)} {hA : SpringLike' A} (h : hA.isSimple) (hAv : hA.isIndex v) (n : ) :
        theorem SpringLike'.isIndex.indExtForVIsSimpleOfIsSimple_h {X : Type u_1} [TopologicalSpace X] {i : XType u_2} [(x : X) → Field (i x)] {v : (p : σ(X)) → Valuation (i p.z.1) ℚ≥0} {A : Subring ((x : X) → i x)} {hA : SpringLike' A} (h : hA.isSimple) (hAv : hA.isIndex v) (n : ) :
        theorem SpringLike'.isIndex.indExtForVIsSimpleOfIsSimple_h' {X : Type u_1} [TopologicalSpace X] {i : XType u_2} [(x : X) → Field (i x)] {v : (p : σ(X)) → Valuation (i p.z.1) ℚ≥0} {A : Subring ((x : X) → i x)} {hA : SpringLike' A} (h : hA.isSimple) (hAv : hA.isIndex v) (x : X) (n : ) :
        (↑((indExtForVIsSimpleOfIsSimple h hAv n).h x)).toFun = .mp (↑(h.h x)).toFun
        def SpringLike'.isIndex.iSupExtForVIsSimpleOfIsSimple {X : Type u_1} [TopologicalSpace X] {i : XType u_2} [(x : X) → Field (i x)] {v : (p : σ(X)) → Valuation (i p.z.1) ℚ≥0} {A : Subring ((x : X) → i x)} {hA : SpringLike' A} (h : hA.isSimple) (hAv : hA.isIndex v) :

        This corresponds to the first statement in Theorem 4 of the paper.

        Equations
        Instances For
          theorem Subring.map_apply_eq_zero_of_pi_of_eq_of_eq_of_mem_span_of_eq {X : Type u_1} {x : X} {i : XType u_2} [(x : X) → CommRing (i x)] {A : Subring ((x : X) → i x)} {a b c : A} {R : Type u_3} [Ring R] {h : (x : X) → i x →+* R} (hahx : (h x) (a x) = 0) (hbhx : (h x) (b x) = 0) {m : FreeCommRing (Fin 2)} (hm : m Ideal.span {FreeCommRing.of 0, FreeCommRing.of 1}) (habcm : (FreeCommRing.lift fun (i_1 : Fin 2) => if i_1 = 0 then a else b) m = c) :
          (h x) (c x) = 0
          theorem Subring.map_apply_eq_map_apply_of_pi_of_eq_of_eq {X : Type u_1} {x y : X} {i : XType u_2} [(x : X) → CommRing (i x)] {A : Subring ((x : X) → i x)} {a b c : A} {R : Type u_3} [Ring R] {h : (x : X) → i x →+* R} (hahxy : (h x) (a x) = (h y) (a y)) (hbhxy : (h x) (b x) = (h y) (b y)) {m : FreeCommRing (Fin 2)} (habcm : (FreeCommRing.lift fun (i_1 : Fin 2) => if i_1 = 0 then a else b) m = c) :
          (h x) (c x) = (h y) (c y)
          def NonVanishingConstSetsFromInter {X : Type u_1} {i : XType u_2} [(x : X) → Ring (i x)] {A : Subring ((x : X) → i x)} (a b : A) {R : Type u_3} [Ring R] (h : (x : X) → i x →+* R) :
          Set (Set X)
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem NonVanishingConstSetsFromInter.sUnion_eq {X : Type u_1} {i : XType u_2} [(x : X) → Ring (i x)] {A : Subring ((x : X) → i x)} (a b : A) {R : Type u_3} [Ring R] (h : (x : X) → i x →+* R) :
            ⋃₀ NonVanishingConstSetsFromInter a b h = {x : X | (h x) (a x) 0 (h x) (b x) 0}
            theorem NonVanishingConstSetsFromInter.map_apply_eq_map_apply_of_mem_of_mem_of_apply_eq {X : Type u_1} {x y : X} {i : XType u_2} [(x : X) → CommRing (i x)] {A : Subring ((x : X) → i x)} {a b c : A} {R : Type u_3} [Ring R] {h : (x : X) → i x →+* R} {s : Set X} (habhs : s NonVanishingConstSetsFromInter a b h) (hsx : x s) (hsy : y s) {m : FreeCommRing (Fin 2)} (habcm : (FreeCommRing.lift fun (i_1 : Fin 2) => if i_1 = 0 then a else b) m = c) :
            (h x) (c x) = (h y) (c y)
            theorem NonVanishingConstSetsFromInter.map_apply_ne_zero_of_forall_mem_of_forall_ne_zero_of_apply_eq {X : Type u_1} {x : X} {i : XType u_2} [(x : X) → CommRing (i x)] {A : Subring ((x : X) → i x)} {a b c : A} {R : Type u_3} [Ring R] {h : (x : X) → i x →+* R} (habhx : (h x) (a x) 0 (h x) (b x) 0) {f : (s : Set X) → s NonVanishingConstSetsFromInter a b hX} (habfh : ∀ (s : Set X) (hs : s NonVanishingConstSetsFromInter a b h), f s hs s) (habcfh : ∀ (s : Set X) (hs : s NonVanishingConstSetsFromInter a b h), (h (f s hs)) (c (f s hs)) 0) {m : FreeCommRing (Fin 2)} (habcm : (FreeCommRing.lift fun (i_1 : Fin 2) => if i_1 = 0 then a else b) m = c) :
            (h x) (c x) 0
            theorem SpringLike'.finite_nonVanishingConstSetsFromInter_of_isSimple {X : Type u_1} [TopologicalSpace X] {i : XType u_2} [(x : X) → Field (i x)] {A : Subring ((x : X) → i x)} (a b : A) {hA : SpringLike' A} (h : hA.isSimple) :
            theorem SpringLike'.exists_mem_span_and_forall_map_apply_eq_zero_iff_and_of_isSimple {X : Type u_1} [TopologicalSpace X] {i : XType u_2} [(x : X) → Field (i x)] {A : Subring ((x : X) → i x)} (a b : A) {hA : SpringLike' A} (h : hA.isSimple) :
            cIdeal.span {a, b}, ∀ (x : X), (h.h x) (c x) = 0 (h.h x) (a x) = 0 (h.h x) (b x) = 0
            theorem SpringLike'.exists_mem_span_and_forall_apply_eq_zero_iff_and_of_isSimple {X : Type u_1} [TopologicalSpace X] {i : XType u_2} [(x : X) → Field (i x)] {A : Subring ((x : X) → i x)} (a b : A) {hA : SpringLike' A} (h : hA.isSimple) :
            cIdeal.span {a, b}, ∀ (x : X), c x = 0 a x = 0 b x = 0
            theorem SpringLike'.exists_mem_span_and_forall_apply_eq_zero_iff_forall_of_isSimple {X : Type u_1} [TopologicalSpace X] {i : XType u_2} [(x : X) → Field (i x)] {A : Subring ((x : X) → i x)} {B : Set A} (hB : B.Finite) {hA : SpringLike' A} (h : hA.isSimple) :
            cIdeal.span B, ∀ (x : X), c x = 0 bB, b x = 0
            theorem SpringLike'.exists_mem_span_and_eq_biInter_of_isSimple {X : Type u_1} [TopologicalSpace X] {i : XType u_2} [(x : X) → Field (i x)] {A : Subring ((x : X) → i x)} {B : Set A} (hB : B.Finite) {hA : SpringLike' A} (h : hA.isSimple) :
            cIdeal.span B, {x : X | c x = 0} = bB, {x : X | b x = 0}
            theorem SpringLike'.springLike_spring_isAffine_of_isSimple_of_forall_imp {X : Type u_1} [TopologicalSpace X] {i : XType u_2} [(x : X) → Field (i x)] {A : Subring ((x : X) → i x)} {hA : SpringLike' A} (h1 : hA.isSimple) (h2 : ∀ (a b : A), (∀ (x : X), b x = 0a x = 0)a (Ideal.span {b}).radical) :

            This corresponds to the second statement in Theorem 4 of the paper.

            theorem SpringLike'.isIndex.iSupExtForV_springLike_spring_isAffine_of_isSimple {X : Type u_1} [TopologicalSpace X] {i : XType u_2} [(x : X) → Field (i x)] {v : (p : σ(X)) → Valuation (i p.z.1) ℚ≥0} {A : Subring ((x : X) → i x)} {hA : SpringLike' A} (h : hA.isSimple) (hAv : hA.isIndex v) :

            This corresponds to the third statement in Theorem 4 of the paper.