Centers of subgroups #
The center of a group G is the set of elements that commute with everything in G
Equations
- Subgroup.center G = { carrier := Set.center G, mul_mem' := ⋯, one_mem' := ⋯, inv_mem' := ⋯ }
Instances For
The center of an additive group G is the set of elements that commute with
everything in G
Equations
- AddSubgroup.center G = { carrier := Set.addCenter G, add_mem' := ⋯, zero_mem' := ⋯, neg_mem' := ⋯ }
Instances For
@[simp]
theorem
Subgroup.center_toSubmonoid
(G : Type u_1)
[Group G]
:
(center G).toSubmonoid = Submonoid.center G
@[simp]
theorem
AddSubgroup.center_toAddSubmonoid
(G : Type u_1)
[AddGroup G]
:
(center G).toAddSubmonoid = AddSubmonoid.center G
@[simp]
theorem
Subgroup.centerCongr_symm_apply_coe
{G : Type u_1}
[Group G]
{H : Type u_2}
[Group H]
(e : G ≃* H)
(s : ↥(Subsemigroup.center H))
:
↑((centerCongr e).symm s) = e.symm ↑s
@[simp]
theorem
AddSubgroup.centerCongr_symm_apply_coe
{G : Type u_1}
[AddGroup G]
{H : Type u_2}
[AddGroup H]
(e : G ≃+ H)
(s : ↥(AddSubsemigroup.center H))
:
↑((centerCongr e).symm s) = e.symm ↑s
@[simp]
theorem
AddSubgroup.centerCongr_apply_coe
{G : Type u_1}
[AddGroup G]
{H : Type u_2}
[AddGroup H]
(e : G ≃+ H)
(r : ↥(AddSubsemigroup.center G))
:
↑((centerCongr e) r) = e ↑r
@[simp]
theorem
Subgroup.centerCongr_apply_coe
{G : Type u_1}
[Group G]
{H : Type u_2}
[Group H]
(e : G ≃* H)
(r : ↥(Subsemigroup.center G))
:
↑((centerCongr e) r) = e ↑r
The center of a group is isomorphic to the center of its opposite.
Instances For
The center of an additive group is isomorphic to the center of its opposite.
Instances For
@[simp]
theorem
Subgroup.centerToMulOpposite_symm_apply_coe
(G : Type u_1)
[Group G]
(r : ↥(Subsemigroup.center Gᵐᵒᵖ))
:
↑((centerToMulOpposite G).symm r) = MulOpposite.unop ↑r
@[simp]
theorem
AddSubgroup.centerToAddOpposite_apply_coe
(G : Type u_1)
[AddGroup G]
(r : ↥(AddSubsemigroup.center G))
:
↑((centerToAddOpposite G) r) = AddOpposite.op ↑r
@[simp]
theorem
AddSubgroup.centerToAddOpposite_symm_apply_coe
(G : Type u_1)
[AddGroup G]
(r : ↥(AddSubsemigroup.center Gᵃᵒᵖ))
:
↑((centerToAddOpposite G).symm r) = AddOpposite.unop ↑r
@[simp]
theorem
Subgroup.centerToMulOpposite_apply_coe
(G : Type u_1)
[Group G]
(r : ↥(Subsemigroup.center G))
:
↑((centerToMulOpposite G) r) = MulOpposite.op ↑r
def
Subgroup.centerUnitsEquivUnitsCenter
(G₀ : Type u_2)
[GroupWithZero G₀]
:
↥(center G₀ˣ) ≃* (↥(Submonoid.center G₀))ˣ
For a group with zero, the center of the units is the same as the units of the center.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Subgroup.val_centerUnitsEquivUnitsCenter_apply_coe
(G₀ : Type u_2)
[GroupWithZero G₀]
(a : ↥(center G₀ˣ))
:
↑↑((centerUnitsEquivUnitsCenter G₀) a) = ↑↑a
@[simp]
theorem
Subgroup.val_centerUnitsEquivUnitsCenter_symm_apply_coe
(G₀ : Type u_2)
[GroupWithZero G₀]
(u : (↥(Submonoid.center G₀))ˣ)
:
↑↑((centerUnitsEquivUnitsCenter G₀).symm u) = ↑↑u
A group is commutative if the center is the whole group
Equations
Instances For
theorem
IsConj.eq_of_left_mem_center
{M : Type u_2}
[Monoid M]
{g h : M}
(H : IsConj g h)
(Hg : g ∈ Set.center M)
:
g = h
theorem
IsConj.eq_of_right_mem_center
{M : Type u_2}
[Monoid M]
{g h : M}
(H : IsConj g h)
(Hh : h ∈ Set.center M)
:
g = h
theorem
ConjClasses.mk_bijOn
(G : Type u_2)
[Group G]
:
Set.BijOn ConjClasses.mk (↑(Subgroup.center G)) (noncenter G)ᶜ