Documentation

Mathlib.CategoryTheory.Subpresheaf.Image

The image of a subpresheaf #

Given a morphism of presheaves of types p : F' ⟶ F, we define its range Subpresheaf.range p. More generally, if G' : Subpresheaf F', we define G'.image p : Subpresheaf F as the image of G' by f, and if G : Subpresheaf F, we define its preimage G.preimage f : Subpresheaf F'.

The range of a morphism of presheaves of types, as a subpresheaf of the target.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.Subpresheaf.range_obj {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (p : F' F) (U : Cᵒᵖ) :
    (range p).obj U = Set.range (p.app U)
    def CategoryTheory.Subpresheaf.lift {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) {G : Subpresheaf F} (hf : range f G) :
    F' G.toPresheaf

    If the image of a morphism falls in a subpresheaf, then the morphism factors through it.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Subpresheaf.lift_app_coe {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) {G : Subpresheaf F} (hf : range f G) (U : Cᵒᵖ) (x : F'.obj U) :
      ((lift f hf).app U x) = f.app U x
      @[simp]
      theorem CategoryTheory.Subpresheaf.lift_ι {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) {G : Subpresheaf F} (hf : range f G) :
      CategoryStruct.comp (lift f hf) G = f
      @[simp]
      theorem CategoryTheory.Subpresheaf.lift_ι_assoc {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) {G : Subpresheaf F} (hf : range f G) {Z : Functor Cᵒᵖ (Type w)} (h : F Z) :
      def CategoryTheory.Subpresheaf.toRange {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (p : F' F) :
      F' (range p).toPresheaf

      Given a morphism p : F' ⟶ F of presheaves of types, this is the morphism from F' to its range.

      Equations
      Instances For
        theorem CategoryTheory.Subpresheaf.toRange_app_val {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (p : F' F) {i : Cᵒᵖ} (x : F'.obj i) :
        ((toRange p).app i x) = p.app i x
        theorem CategoryTheory.Subpresheaf.range_comp_le {C : Type u} [Category.{v, u} C] {F F' F'' : Functor Cᵒᵖ (Type w)} (f : F F') (g : F' F'') :

        The image of a subpresheaf by a morphism of presheaves of types.

        Equations
        • G.image f = { obj := fun (i : Cᵒᵖ) => f.app i '' G.obj i, map := }
        Instances For
          @[simp]
          theorem CategoryTheory.Subpresheaf.image_obj {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (f : F F') (i : Cᵒᵖ) :
          (G.image f).obj i = f.app i '' G.obj i
          theorem CategoryTheory.Subpresheaf.image_top {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (f : F F') :
          .image f = range f
          theorem CategoryTheory.Subpresheaf.image_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (f : F F') (g : F' F'') :
          G.image (CategoryStruct.comp f g) = (G.image f).image g
          theorem CategoryTheory.Subpresheaf.range_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor Cᵒᵖ (Type w)} (f : F F') (g : F' F'') :
          range (CategoryStruct.comp f g) = (range f).image g

          The preimage of a subpresheaf by a morphism of presheaves of types.

          Equations
          • G.preimage p = { obj := fun (n : Cᵒᵖ) => p.app n ⁻¹' G.obj n, map := }
          Instances For
            @[simp]
            theorem CategoryTheory.Subpresheaf.preimage_obj {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (p : F' F) (n : Cᵒᵖ) :
            (G.preimage p).obj n = p.app n ⁻¹' G.obj n
            theorem CategoryTheory.Subpresheaf.preimage_comp {C : Type u} [Category.{v, u} C] {F F' F'' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (f : F'' F') (g : F' F) :
            G.preimage (CategoryStruct.comp f g) = (G.preimage g).preimage f
            theorem CategoryTheory.Subpresheaf.image_le_iff {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (f : F F') (G' : Subpresheaf F') :
            G.image f G' G G'.preimage f
            def CategoryTheory.Subpresheaf.fromPreimage {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (p : F' F) :
            (G.preimage p).toPresheaf G.toPresheaf

            Given a morphism p : F' ⟶ F of presheaves of types and G : Subpresheaf F, this is the morphism from the preimage of G by p to G.

            Equations
            Instances For
              theorem CategoryTheory.Subpresheaf.fromPreimage_ι {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (p : F' F) :
              CategoryStruct.comp (G.fromPreimage p) G = CategoryStruct.comp (G.preimage p) p
              theorem CategoryTheory.Subpresheaf.fromPreimage_ι_assoc {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (p : F' F) {Z : Functor Cᵒᵖ (Type w)} (h : F Z) :
              CategoryStruct.comp (G.fromPreimage p) (CategoryStruct.comp G h) = CategoryStruct.comp (G.preimage p) (CategoryStruct.comp p h)
              theorem CategoryTheory.Subpresheaf.preimage_eq_top_iff {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (p : F' F) :
              G.preimage p = range p G
              @[simp]
              theorem CategoryTheory.Subpresheaf.preimage_image_of_epi {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (G : Subpresheaf F) (p : F' F) [hp : Epi p] :
              (G.preimage p).image p = G
              @[deprecated CategoryTheory.Subpresheaf.range (since := "2025-01-25")]

              Alias of CategoryTheory.Subpresheaf.range.


              The range of a morphism of presheaves of types, as a subpresheaf of the target.

              Equations
              Instances For
                @[deprecated CategoryTheory.Subpresheaf.range_id (since := "2025-01-25")]

                Alias of CategoryTheory.Subpresheaf.range_id.

                @[deprecated CategoryTheory.Subpresheaf.toRange (since := "2025-01-25")]
                def CategoryTheory.toImagePresheaf {C : Type u} [Category.{v, u} C] {F F' : Functor Cᵒᵖ (Type w)} (p : F' F) :
                F' (Subpresheaf.range p).toPresheaf

                Alias of CategoryTheory.Subpresheaf.toRange.


                Given a morphism p : F' ⟶ F of presheaves of types, this is the morphism from F' to its range.

                Equations
                Instances For
                  @[deprecated CategoryTheory.Subpresheaf.toRange_ι (since := "2025-01-25")]

                  Alias of CategoryTheory.Subpresheaf.toRange_ι.

                  @[deprecated CategoryTheory.Subpresheaf.range_comp_le (since := "2025-01-25")]

                  Alias of CategoryTheory.Subpresheaf.range_comp_le.