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Chapter 1

Some Basic Facts

Lemma 1. Let ℎ ∶ 𝐴 → 𝐵 be a homomorphism between commutative rings and suppose 𝑂 ⊆
𝑆𝑝𝑒𝑐(𝐴) is quasi-compact and open. Then 𝑆𝑝𝑒𝑐(ℎ)−1(𝑂) is quasi-compact.

Proof. Note that if 𝐷𝑎 ∶= {𝑝 ∈ 𝑆𝑝𝑒𝑐(𝐴)|𝑎 ∉ 𝑝} is a principal open subset of 𝑆𝑝𝑒𝑐(𝐴), where 𝑎 is
an element of 𝐴, then
𝑆𝑝𝑒𝑐(ℎ)−1(𝐷𝑎)
= {𝑝 ∈ 𝑆𝑝𝑒𝑐(𝐵)|𝑆𝑝𝑒𝑐(ℎ)(𝑝) ∈ 𝐷𝑎}
= {𝑝 ∈ 𝑆𝑝𝑒𝑐(𝐵)|𝑎 ∉ ℎ−1(𝑝)}
= {𝑝 ∈ 𝑆𝑝𝑒𝑐(𝐵)|ℎ(𝑎) ∉ 𝑝}
= 𝐷ℎ(𝑎).

Now as 𝑂 is quasi-compact and open, we can find a finite collection {𝐷𝑎1
, ..., 𝐷𝑎𝑛

} of principal
open subsets of 𝑆𝑝𝑒𝑐(𝐴) such that 𝑂 = ∪𝑛

𝑖=1𝐷𝑎𝑖
. Then

𝑆𝑝𝑒𝑐(ℎ)−1(𝑂)
= 𝑆𝑝𝑒𝑐(ℎ)−1(∪𝑛

𝑖=1𝐷𝑎𝑖
)

= ∪𝑛
𝑖=1𝑆𝑝𝑒𝑐(ℎ)−1(𝐷𝑎𝑖

)
= ∪𝑛

𝑖=1𝐷ℎ(𝑎𝑖),
which is a union of finitely many quasi-compact sets and so is itself quasi-compact (it is well-
known that the principal open subsets of a prime spectrum is quasi-compact).
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Chapter 2

Proposition 2 of Hochster’s Paper

Lemma 2. Let 𝑛 be a positive integer and let (𝑋, 𝐴) be a spring. Suppose 𝑎, 𝑏 ∈ 𝐴 satisfy
𝑧(𝑏) ⊆ 𝑧(𝑎). Then 𝑧(𝑏𝑛) ⊆ 𝑧(𝑎𝑛) and (𝑎#𝑏)𝑛 = 𝑎𝑛#𝑏𝑛.

Lemma 3. Let (𝑓, ℎ) be a spring morphism from (𝑋, 𝐴) to (𝑋′, 𝐴′). Suppose 𝑥 ∈ 𝑋 and 𝑐 ∈ 𝐴′.
Then 𝑥 ∈ 𝑑(ℎ(𝑐)) if and only if 𝑓(𝑥) ∈ 𝑑(𝑐).
Proof. 𝑥 ∈ 𝑑(ℎ(𝑐)) if and only if ℎ(𝑐) ∉ 𝑥, which is true if and only if 𝑐 ∉ 𝑓(𝑥) (because
𝑓 = 𝑆𝑝𝑒𝑐(ℎ)), which is equivalent to 𝑓(𝑥) ∈ 𝑑(𝑐).
Proposition 4. Let 𝐴 = (𝑋, 𝐴) and 𝐴′ = (𝑋′, 𝐴′) be springs with indices 𝑣 and 𝑣′ respectively.
Let (𝑓, ℎ) be an indexed spring homomorphism from 𝐴 to 𝐴′. If (𝑎, 𝑏) belongs to 𝐺(𝐴′, 𝑣′), then
(h(a),h(b)) belongs to 𝐺(𝐴, 𝑣).
Proof. We first show that 𝑧(ℎ(𝑏)) ⊆ 𝑧(ℎ(𝑎)). Indeed, if 𝑥 ∈ 𝑋 belongs to 𝑧(ℎ(𝑏)), then by
Lemma 3 we have that 𝑓(𝑥) ∈ 𝑧(𝑏). As 𝑧(𝑏) ⊆ 𝑧(𝑎), 𝑓(𝑥) ∈ 𝑧(𝑎). Then Lemma 3 implies that
𝑥 ∈ 𝑧(ℎ(𝑎)).

By Theorem 3 of Hochster’s paper, we now only need to show that for any element 𝑝 = (𝑦, 𝑥) of
𝜎(𝑋) such that ℎ(𝑎)(𝑦) ≠ 0 it is true that 𝑣𝑝(ℎ(𝑏)) ≤ 𝑣𝑝(ℎ(𝑎)), with equality only if ℎ(𝑏)(𝑥) ≠ 0.

Indeed, if 𝑦 ∈ 𝑑(ℎ(𝑎)), then by Lemma 3 we know that 𝑓(𝑦) ∈ 𝑑(𝑎). Because (𝑓(𝑦), 𝑓(𝑥)) ∈
𝜎(𝑋′), Theorem 3 in Hochster’s thesis implies that 𝑣𝑓(𝑝)(𝑎) ≥ 𝑣𝑓(𝑝)(𝑏). By the definition of
an indexed spring morphism, 𝑣𝑓(𝑝)(𝑎) = 𝑣𝑝(ℎ(𝑎)) and 𝑣𝑓(𝑝)(𝑏) = 𝑣𝑝(ℎ(𝑏)). Hence 𝑣𝑝(ℎ(𝑎)) ≥
𝑣𝑝(ℎ(𝑏)).

If 𝑣𝑝(ℎ(𝑏)) = 𝑣𝑝(ℎ(𝑎)), then 𝑣𝑓(𝑝)(𝑎) = 𝑣𝑓(𝑝)(𝑏) and so 𝑓(𝑥) ∈ 𝑑(𝑏). Thus, by Lemma 3 we
have that 𝑥 ∈ 𝑑(ℎ(𝑏)) and we are done!

Proposition 5. Let 𝐴 = (𝑋, 𝐴) and 𝐴′ = (𝑋′, 𝐴′) be springs with indices 𝑣 and 𝑣′ respectively.
Let (𝑓, ℎ) be an indexed spring morphism from 𝐴 to 𝐴′. Suppose (𝑎, 𝑏) ∈ 𝐺(𝐴′, 𝑣′). Then there
exists a unique ring homomorphism ℎ1 from 𝐴′[𝑎#𝑏] to 𝐴[ℎ(𝑎), ℎ(𝑏)] that extends ℎ and maps
𝑎#𝑏 to ℎ(𝑏)#ℎ(𝑏).
Proof. The most difficult part of the proof is to show that if 𝑟 = 𝑞(𝑎#𝑏) ∈ 𝐴′ where 𝑞 = Σ𝑚

𝑖=0𝑎𝑖𝑡𝑖,
then 𝑟′ ∶= Σ𝑚

𝑖=0ℎ(𝑎𝑖)(ℎ(𝑎)#ℎ(𝑏))𝑖 belongs to 𝐴 and equals ℎ(𝑟). The purpose of showing this is to
guarantee that if we construct the homomorphism ℎ1 in the obvious way, then ℎ1 is well-defined.
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Let 𝑐 ∶= 𝑏𝑚𝑟. Then ℎ(𝑏𝑚)𝑟′ = Σ𝑚
𝑖=0ℎ(𝑎𝑖)ℎ(𝑎)𝑖ℎ(𝑏)𝑚−𝑖 = ℎ(𝑏𝑚)ℎ(𝑟). We then try to prove

that 𝑟′(𝑥) = ℎ(𝑟)(𝑥) for any 𝑥 ∈ 𝑋. We show this by classifying the 𝑥’s. If 𝑥 ∈ 𝑑(ℎ(𝑏)), then it
is clear that 𝑟′(𝑥) = ℎ(𝑟)(𝑥) because we have shown that ℎ(𝑏𝑚)𝑟′ = ℎ(𝑏𝑚)ℎ(𝑟).

Now assume 𝑥 ∈ 𝑧(ℎ(𝑏)). Let ℎ ∶ 𝐴′
ℎ−1(𝑥) → 𝐴

𝑥 be the ring homomorphism induced by ℎ. Then
𝑟′(𝑥) = ℎ(𝑎0)(𝑥) = ℎ(𝑎0) + 𝑥(∈ 𝐴

𝑥 ) = ℎ(𝑎0 + ℎ−1(𝑥))
= ℎ(𝑎0(𝑓(𝑥))) = ℎ(𝑟(𝑓(𝑥))) = ℎ(𝑟 + ℎ−1(𝑥))
= ℎ(𝑟) + 𝑥(∈ 𝐴

𝑥 ) = ℎ(𝑟)(𝑥).

It is easy to show that the obvious way to define ℎ1 satisfy the axioms of ring homomorphisms,
and that this extension of ℎ is unique.

Proposition 6. Let 𝐴 = (𝑋, 𝐴) and 𝐴′ = (𝑋′, 𝐴′) be springs with indices 𝑣 and 𝑣′ respectively.
Let (𝑓, ℎ) be an indexed spring morphism from (𝑋, 𝐴) to (𝑋′, 𝐴′). Suppose (𝑎, 𝑏) ∈ 𝐺(𝐴′, 𝑣′)
and let ℎ1 be the ring homomorphism constructed in Proposition 5. Then (𝑓, ℎ1) is an indexed
spring morphism from 𝐴[ℎ(𝑎)#ℎ(𝑏)], 𝑣 to 𝐴′[𝑎#𝑏], 𝑣′.

Proof. Let 𝑟 = 𝑞(𝑎#𝑏) where 𝑞 = Σ𝑚
𝑖=0𝑎𝑖𝑡𝑖 ∈ 𝐴′[𝑡]. We first show that 𝑓−1(𝑧(𝑟)) = 𝑧(ℎ1(𝑟)).

By a previous comment, this is sufficient for proving that (𝑓, ℎ1) is a spring morphism from
𝐴[ℎ(𝑎)#ℎ(𝑏)] to 𝐴′[𝑎#𝑏], as 𝑟 has been taken arbitrarily.

Pick some 𝑥 ∈ 𝑋. Let 𝑐 ∶= 𝑏𝑚𝑟 = Σ𝑚
𝑖=0𝑎𝑖𝑎𝑖𝑏𝑚−𝑖. Then ℎ(𝑐) = Σ𝑚

𝑖=0ℎ(𝑎𝑖)ℎ(𝑎)𝑖ℎ(𝑏)𝑚−𝑖 =
ℎ(𝑏)𝑚ℎ1(𝑟) and we have:
𝑥 ∈ 𝑓−1(𝑧(𝑟))
⇔ 𝑓(𝑥) ∈ 𝑧(𝑟) = (𝑧(𝑐) ∩ 𝑑(𝑎)) ∪ (𝑧(𝑎0) ∩ 𝑧(𝑎))
⇔ 𝑥 ∈ (𝑧(ℎ(𝑐)) ∩ 𝑑(ℎ(𝑎))) ∪ (𝑧(ℎ(𝑎0)) ∩ 𝑧(ℎ(𝑎)))
⇔ 𝑥 ∈ 𝑧(ℎ1(𝑟)).

We still need to show that for any 𝑝 = (𝑦, 𝑥) ∈ 𝜎(𝑋) with 𝑦 ∈ 𝑑(ℎ1(𝑟)) it is true that
𝑣𝑝(ℎ1(𝑟)) = 𝑣𝑓(𝑝)(𝑟). Indeed, because ℎ(𝑐) = ℎ(𝑏)𝑚ℎ1(𝑟), 𝑣𝑝(ℎ1(𝑟)) = 𝑣𝑝(ℎ(𝑐)) − 𝑣𝑝(ℎ(𝑏𝑚)) =
𝑣𝑓(𝑝)(𝑐) − 𝑣𝑓(𝑝)(𝑏𝑚) = 𝑣𝑓(𝑝)(𝑟).

Proposition 7. Let 𝐴 = (𝑋, 𝐴) and 𝐴′ = (𝑋′, 𝐴′) be springs with indices 𝑣 and 𝑣′ respectively.
Let (𝑓, ℎ) be an indexed spring morphism from (𝑋, 𝐴) to (𝑋′, 𝐴′). Suppose (𝑎, 𝑏) ∈ 𝐺(𝐴′, 𝑣′),
𝐴′′ and 𝐴′′′ extend 𝐴 and 𝐴′[𝑎#𝑏] respectively, and ℎ2 ∶ 𝐴′′′ → 𝐴′′ is a ring homomorphism
extending ℎ. If (𝑓, ℎ2) is a spring morphism from 𝐴′′ to 𝐴′′′, then ℎ(𝑎)#ℎ(𝑏) = ℎ2(𝑎#𝑏),
meaning that ℎ(𝑎)#ℎ(𝑏) belongs to 𝐴′′.

Proof. We show that for any 𝑥 ∈ 𝑋, ℎ2(𝑎#𝑏)(𝑥) = (ℎ(𝑎)#ℎ(𝑏))(𝑥). Indeed, if ℎ(𝑏)(𝑥) ≠ 0, then
as
ℎ2(𝑎#𝑏)ℎ(𝑏) = ℎ2(𝑎#𝑏)ℎ2(𝑏) = ℎ2(𝑎) = ℎ(𝑎) = (ℎ(𝑎)#ℎ(𝑏))ℎ(𝑏),
we immediately have that ℎ2(𝑎#𝑏)(𝑥) = (ℎ(𝑎)#ℎ(𝑏))(𝑥). If ℎ(𝑏)(𝑥) = 0, then 𝑥 ∈ 𝑧(ℎ2(𝑏)) and so
𝑓(𝑥) ∈ 𝑧(𝑏) by Lemma 3. This means (𝑎#𝑏)(𝑓(𝑥)) = 0. Then Lemma 3 implies ℎ2(𝑎#𝑏)(𝑥) = 0,
so ℎ2(𝑎#𝑏)(𝑥) = (ℎ(𝑎)#ℎ(𝑏))(𝑥).
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