Hochster

FMLJohn

January 4, 2025

Chapter 1

Some Basic Facts

Lemma 1. Let $h : A \to B$ be a homomorphism between commutative rings and suppose $O \subseteq$ Spec(A) is quasi-compact and open. Then $Spec(h)^{-1}(O)$ is quasi-compact.

 $\textit{Proof. Note that if } D_a := \{p \in Spec(A) | a \notin p\} \text{ is a principal open subset of } Spec(A), \text{ where } a \text{ is } a \in A \}$ an element of A, then $Spec(h)^{-1}(D_a)$ $= \{p \in Spec(B) | Spec(h)(p) \in D_a\}$ $=\{p\in Spec(B)|a\notin h^{-1}(p)\}$ $= \{p \in Spec(B) | h(a) \notin p\}$ $=D_{h(a)}.$

Now as O is quasi-compact and open, we can find a finite collection $\{D_{a_1}, ..., D_{a_n}\}$ of principal open subsets of Spec(A) such that $O = \bigcup_{i=1}^{n} D_{a_i}$. Then
$$\begin{split} & Spec(h)^{-1}(O) \\ & = Spec(h)^{-1}(\cup_{i=1}^n D_{a_i}) \end{split}$$

 $=\cup_{i=1}^n Spec(h)^{-1}(D_{a_i})$

 $= \bigcup_{i=1}^{n-1} D_{h(a_i)},$ which is a union of finitely many quasi-compact sets and so is itself quasi-compact (it is well-

Chapter 2

Proposition 2 of Hochster's Paper

Lemma 2. Let n be a positive integer and let (X, A) be a spring. Suppose $a, b \in A$ satisfy $z(b) \subseteq z(a)$. Then $z(b^n) \subseteq z(a^n)$ and $(a\#b)^n = a^n \#b^n$.

Lemma 3. Let (f,h) be a spring morphism from (X, A) to (X', A'). Suppose $x \in X$ and $c \in A'$. Then $x \in d(h(c))$ if and only if $f(x) \in d(c)$.

Proof. $x \in d(h(c))$ if and only if $h(c) \notin x$, which is true if and only if $c \notin f(x)$ (because f = Spec(h)), which is equivalent to $f(x) \in d(c)$.

Proposition 4. Let A = (X, A) and A' = (X', A') be springs with indices v and v' respectively. Let (f, h) be an indexed spring homomorphism from A to A'. If (a, b) belongs to G(A', v'), then (h(a), h(b)) belongs to G(A, v).

Proof. We first show that $z(h(b)) \subseteq z(h(a))$. Indeed, if $x \in X$ belongs to z(h(b)), then by Lemma 3 we have that $f(x) \in z(b)$. As $z(b) \subseteq z(a)$, $f(x) \in z(a)$. Then Lemma 3 implies that $x \in z(h(a))$.

By Theorem 3 of Hochster's paper, we now only need to show that for any element p = (y, x) of $\sigma(X)$ such that $h(a)(y) \neq 0$ it is true that $v_p(h(b)) \leq v_p(h(a))$, with equality only if $h(b)(x) \neq 0$.

Indeed, if $y \in d(h(a))$, then by Lemma 3 we know that $f(y) \in d(a)$. Because $(f(y), f(x)) \in \sigma(X')$, Theorem 3 in Hochster's thesis implies that $v_{f(p)}(a) \ge v_{f(p)}(b)$. By the definition of an indexed spring morphism, $v_{f(p)}(a) = v_p(h(a))$ and $v_{f(p)}(b) = v_p(h(b))$. Hence $v_p(h(a)) \ge v_p(h(b))$.

If $v_p(h(b)) = v_p(h(a))$, then $v_{f(p)}(a) = v_{f(p)}(b)$ and so $f(x) \in d(b)$. Thus, by Lemma 3 we have that $x \in d(h(b))$ and we are done!

Proposition 5. Let A = (X, A) and A' = (X', A') be springs with indices v and v' respectively. Let (f, h) be an indexed spring morphism from A to A'. Suppose $(a, b) \in G(A', v')$. Then there exists a unique ring homomorphism h_1 from A'[a#b] to A[h(a), h(b)] that extends h and maps a#b to h(b)#h(b).

Proof. The most difficult part of the proof is to show that if $r = q(a\#b) \in A'$ where $q = \sum_{i=0}^{m} a_i t^i$, then $r' := \sum_{i=0}^{m} h(a_i)(h(a)\#h(b))^i$ belongs to A and equals h(r). The purpose of showing this is to guarantee that if we construct the homomorphism h_1 in the obvious way, then h_1 is well-defined.

Let $c := b^m r$. Then $h(b^m)r' = \sum_{i=0}^m h(a_i)h(a)^i h(b)^{m-i} = h(b^m)h(r)$. We then try to prove that r'(x) = h(r)(x) for any $x \in X$. We show this by classifying the x's. If $x \in d(h(b))$, then it is clear that r'(x) = h(r)(x) because we have shown that $h(b^m)r' = h(b^m)h(r)$.

Now assume $x \in z(h(b))$. Let $\overline{h} : \frac{A'}{h^{-1}(x)} \to \frac{A}{x}$ be the ring homomorphism induced by h. Then $r'(x) = h(a_0)(x) = h(a_0) + x(\in \frac{A}{x}) = \overline{h}(a_0 + h^{-1}(x))$ = $\overline{h}(a_0(f(x))) = \overline{h}(r(f(x))) = \overline{h}(r + h^{-1}(x))$ = $h(r) + x(\in \frac{A}{x}) = h(r)(x)$.

It is easy to show that the obvious way to define h_1 satisfy the axioms of ring homomorphisms, and that this extension of h is unique.

Proposition 6. Let A = (X, A) and A' = (X', A') be springs with indices v and v' respectively. Let (f, h) be an indexed spring morphism from (X, A) to (X', A'). Suppose $(a, b) \in G(A', v')$ and let h_1 be the ring homomorphism constructed in Proposition 5. Then (f, h_1) is an indexed spring morphism from A[h(a)#h(b)], v to A'[a#b], v'.

Proof. Let r = q(a#b) where $q = \sum_{i=0}^{m} a_i t^i \in A'[t]$. We first show that $f^{-1}(z(r)) = z(h_1(r))$. By a previous comment, this is sufficient for proving that (f, h_1) is a spring morphism from A[h(a)#h(b)] to A'[a#b], as r has been taken arbitrarily.

Pick some $x \in X$. Let $c := b^m r = \sum_{i=0}^m a_i a^i b^{m-i}$. Then $h(c) = \sum_{i=0}^m h(a_i)h(a)^i h(b)^{m-i} = h(b)^m h_1(r)$ and we have: $x \in f^{-1}(z(r))$ $\Leftrightarrow f(x) \in z(r) = (z(c) \cap d(a)) \cup (z(a_0) \cap z(a))$ $\Leftrightarrow x \in (z(h(c)) \cap d(h(a))) \cup (z(h(a_0)) \cap z(h(a)))$ $\Leftrightarrow x \in z(h_1(r)).$

We still need to show that for any $p = (y, x) \in \sigma(X)$ with $y \in d(h_1(r))$ it is true that $v_p(h_1(r)) = v_{f(p)}(r)$. Indeed, because $h(c) = h(b)^m h_1(r)$, $v_p(h_1(r)) = v_p(h(c)) - v_p(h(b^m)) = v_{f(p)}(c) - v_{f(p)}(b^m) = v_{f(p)}(r)$.

Proposition 7. Let A = (X, A) and A' = (X', A') be springs with indices v and v' respectively. Let (f, h) be an indexed spring morphism from (X, A) to (X', A'). Suppose $(a, b) \in G(A', v')$, A'' and A''' extend A and A'[a#b] respectively, and $h_2 : A''' \to A''$ is a ring homomorphism extending h. If (f, h_2) is a spring morphism from A'' to A''', then $h(a)\#h(b) = h_2(a\#b)$, meaning that h(a)#h(b) belongs to A''.

Proof. We show that for any $x \in X$, $h_2(a\#b)(x) = (h(a)\#h(b))(x)$. Indeed, if $h(b)(x) \neq 0$, then as

 $\begin{array}{l} h_2(a\#b)h(b) = h_2(a\#b)h_2(b) = h_2(a) = h(a) = (h(a)\#h(b))h(b),\\ \text{we immediately have that } h_2(a\#b)(x) = (h(a)\#h(b))(x). \text{ If } h(b)(x) = 0, \text{ then } x \in z(h_2(b)) \text{ and so } f(x) \in z(b) \text{ by Lemma 3. This means } (a\#b)(f(x)) = 0. \text{ Then Lemma 3 implies } h_2(a\#b)(x) = 0,\\ \text{so } h_2(a\#b)(x) = (h(a)\#h(b))(x). \end{array}$